

γ-谷氨酸激酶 (γ-GK) 酶活测定试剂盒说明书

(货号: BP10439F 分光法 24样 有效期: 3个月)

一、指标介绍:

本试剂盒利用γ-GK 催化谷氨酸磷酸化,进一步转化为γ-谷氨酰基异羟肟酸,在酸性条件下与 Fe3⁺形成 Hydroxamate-Fe3⁺复合物 ,通过检测该复合物在 535 nm 波长处的 OD 值,进而得出γ-GK 酶活力大小。该酶催化的反应方程式:ATP+L-glutamate=ADP+L-glutamate 5-phosphate。

二、试剂盒组成和配制:

	J. I. J -		
试剂组分	试剂规格	存放温度	注意事项
提取液	液体 30mL×1 瓶	4℃保存	
试剂一	液体 8mL×1 瓶	4℃保存	
试剂二	粉体 1 瓶	4℃保存	1. 开盖前注意使粉体落入底部(可 手动甩一甩); 2. 加入 10mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。
试剂三	液体 8mL×1 瓶	4℃避光保存	
试剂四	粉体1支	4℃避光保存	1. 开盖前注意使粉体落入底部(可 手动甩一甩); 2. 加入 1.8mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。
试剂五	液体 15mL×1 瓶	4℃保存	

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 比色皿、离心管、分光光度计、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议正式实验前选取 2 个样本做预测定,了解本批样本情况,熟悉实验流程,避免实验样本和试剂浪费!

1、样本提取:

① 组织样本:

取约 0.1g 组织, 加入 1mL 提取液, 冰浴匀浆, 12000rpm, 4℃离心 10min, 取上清液待用。

【注】:若增加样本量,可按照组织质量(g):提取液体积(mL)为 1: $5\sim10$ 的比例进行提取

② 细菌/细胞样本:

先收集细菌或细胞到离心管内,离心后弃上清;取约 500 万细菌或细胞加入 1mL 提取液,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次);12000rpm 4 ℃ 离心 10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(104):提取液(mL)为500~1000:1的比例进行提取。

- ③ 液体样本: 澄清的液体样本直接检测, 若浑浊则离心后取上清检测。
- 2、检测步骤:
- ① 分光光度计预热 30min 以上,调节波长至 535nm,蒸馏水调零。
- ② 所有试剂解冻至室温。

网址: www.bpelisa.com

③ 在 EP 管中依次加入:

试剂(μL)	测定管	对照管		
样本	150	150		
试剂一	150	120		
试剂二	150	150		
试剂三	150	150		
试剂四		30		
混匀,37℃水浴 60min				
试剂五	300	300		

混匀,反应 2min 后,8000rpm,4℃离心 10min,取全部上清液于 1mL 玻璃比色皿中,535nm 处分别读取吸光值 A, △A=A 测定管-A 对照管(每个测定管须设一个对应的对照管)。

【注】若 ΔA 的值在零附近徘徊,则可加大样本量 V1(如增至 $200\mu L$,则试剂一相应减少),则改变后的加样 体积 V1 需代入计算公式重新计算。

五、结果计算:

1、按样本蛋白浓度计算

单位定义: 每毫克组织蛋白在每小时内催化产生 1 nmol 谷氨酰羟肟酯所需的酶量定义为一个酶活力单位。

 γ -GK 活性(nmol/h/mg prot)=[Δ A×V2÷(ϵ ×d)×10⁹]÷(V1×Cpr)÷T=240× Δ A÷Cpr

2、按样本鲜重计算

单位定义:每克组织在每小时内催化产生 1 nmol 谷氨酰羟肟酯所需的酶量定义为一个酶活力单位。 γ -GK 活性(nmol/min/g 鲜重)=[$\Delta A \times V2 \div (\epsilon \times d) \times 10^9$]÷($W \times V1 \div V$)÷T=2 $40 \times \Delta A \div W$

3、按细菌/细胞数量计算:

单位定义: 每 10^4 个细胞在每小时内催化产生1 nmol 谷氨酰羟肟酯所需的酶量定义为一个酶活单位(U)。 γ -GK 活性(nmoL/min / 10^4 cell)=[$\Delta A \times V2 \div (\epsilon \times d) \times 10^9$]÷($500 \times V1 \div V$)÷ $T=0.48 \times \Delta A$

4、液体中酶活力计算:

单位定义: 每毫升液体在每小时内催化产生 1 nmol 谷氨酰羟肟酯所需的酶量定义为一个酶活力单位。 γ -GK 活性(nmol/min/mL)=[$\Delta A \times V2 \div (\epsilon \times d) \times 10^9$]÷ $V1 \div T = 240 \times \Delta A$

V---提取液体积, 1mL; V1---加入反应体系中样本体积, 0.15mL;

V2--- 反应体系总体积: 9×10-4 L; d---光径, 1cm; T--- 反应时间, 60min=1h; W---样本质量, g;

ε---摩尔消光系数, 2.5×10⁴ L/mol/cm;

Cpr----样本蛋白质浓度,mg/mL,建议使用本公司的 BCA 蛋白含量检测试剂盒。

网址: www.bpelisa.com